6 research outputs found

    Integration of multi-scale protein interactions for biomedical data analysis

    Get PDF
    With the advancement of modern technologies, we observe an increasing accumulation of biomedical data about diseases. There is a need for computational methods to sift through and extract knowledge from the diverse data available in order to improve our mechanistic understanding of diseases and improve patient care. Biomedical data come in various forms as exemplified by the various omics data. Existing studies have shown that each form of omics data gives only partial information on cells state and motivated jointly mining multi-omics, multi-modal data to extract integrated system knowledge. The interactome is of particular importance as it enables the modelling of dependencies arising from molecular interactions. This Thesis takes a special interest in the multi-scale protein interactome and its integration with computational models to extract relevant information from biomedical data. We define multi-scale interactions at different omics scale that involve proteins: pairwise protein-protein interactions, multi-protein complexes, and biological pathways. Using hypergraph representations, we motivate considering higher-order protein interactions, highlighting the complementary biological information contained in the multi-scale interactome. Based on those results, we further investigate how those multi-scale protein interactions can be used as either prior knowledge, or auxiliary data to develop machine learning algorithms. First, we design a neural network using the multi-scale organization of proteins in a cell into biological pathways as prior knowledge and train it to predict a patient's diagnosis based on transcriptomics data. From the trained models, we develop a strategy to extract biomedical knowledge pertaining to the diseases investigated. Second, we propose a general framework based on Non-negative Matrix Factorization to integrate the multi-scale protein interactome with multi-omics data. We show that our approach outperforms the existing methods, provide biomedical insights and relevant hypotheses for specific cancer types

    Integrative Data Analytic Framework to Enhance Cancer Precision Medicine

    Get PDF
    With the advancement of high-throughput biotechnologies, we increasingly accumulate biomedical data about diseases, especially cancer. There is a need for computational models and methods to sift through, integrate, and extract new knowledge from the diverse available data to improve the mechanistic understanding of diseases and patient care. To uncover molecular mechanisms and drug indications for specific cancer types, we develop an integrative framework able to harness a wide range of diverse molecular and pan-cancer data. We show that our approach outperforms competing methods and can identify new associations. Furthermore, through the joint integration of data sources, our framework can also uncover links between cancer types and molecular entities for which no prior knowledge is available. Our new framework is flexible and can be easily reformulated to study any biomedical problems.Comment: 18 page

    Classification in biological networks with hypergraphlet kernels

    Get PDF
    Abstract Motivation Biological and cellular systems are often modeled as graphs in which vertices represent objects of interest (genes, proteins and drugs) and edges represent relational ties between these objects (binds-to, interacts-with and regulates). This approach has been highly successful owing to the theory, methodology and software that support analysis and learning on graphs. Graphs, however, suffer from information loss when modeling physical systems due to their inability to accurately represent multiobject relationships. Hypergraphs, a generalization of graphs, provide a framework to mitigate information loss and unify disparate graph-based methodologies. Results We present a hypergraph-based approach for modeling biological systems and formulate vertex classification, edge classification and link prediction problems on (hyper)graphs as instances of vertex classification on (extended, dual) hypergraphs. We then introduce a novel kernel method on vertex- and edge-labeled (colored) hypergraphs for analysis and learning. The method is based on exact and inexact (via hypergraph edit distances) enumeration of hypergraphlets; i.e. small hypergraphs rooted at a vertex of interest. We empirically evaluate this method on fifteen biological networks and show its potential use in a positive-unlabeled setting to estimate the interactome sizes in various species.This work was partially supported by the National Science Foundation (NSF) [DBI-1458477], National Institutes of Health (NIH) [R01 MH105524], the Indiana University Precision Health Initiative, the European Research Council (ERC) [Consolidator Grant 770827], UCL Computer Science, the Slovenian Research Agency project [J1-8155], the Serbian Ministry of Education and Science Project [III44006] and the Prostate Project.Peer ReviewedPostprint (author's final draft

    Unveiling new disease, pathway, and gene associations via multi-scale neural network

    Get PDF
    International audienceDiseases involve complex modifications to the cellular machinery. The gene expression profile of the affected cells contains characteristic patterns linked to a disease. Hence, new biological knowledge about a disease can be extracted from these profiles, improving our ability to diagnose and assess disease risks. This knowledge can be used for drug re-purposing, or by physicians to evaluate a patient's condition and co-morbidity risk. Here, we consider differential gene expressions obtained by microarray technology for patients diagnosed with various diseases. Based on these data and cellular multi-scale organization, we aim at uncovering disease-disease, disease-gene and disease-pathway associations. We propose a neural network with structure based on the multi-scale organization of proteins in a cell into biological pathways. We show that this model is able to correctly predict the diagnosis for the majority of patients. Through the analysis of the trained model, we predict disease-disease, disease-pathway, and disease-gene associations and validate the predictions by comparisons to known interactions and literature search, proposing putative explanations for the predictions

    PyRelationAL: A Library for Active Learning Research and Development

    Full text link
    In constrained real-world scenarios where it is challenging or costly to generate data, disciplined methods for acquiring informative new data points are of fundamental importance for the efficient training of machine learning (ML) models. Active learning (AL) is a subfield of ML focused on the development of methods to iteratively and economically acquire data through strategically querying new data points that are the most useful for a particular task. Here, we introduce PyRelationAL, an open source library for AL research. We describe a modular toolkit that is compatible with diverse ML frameworks (e.g. PyTorch, Scikit-Learn, TensorFlow, JAX). Furthermore, to help accelerate research and development in the field, the library implements a number of published methods and provides API access to wide-ranging benchmark datasets and AL task configurations based on existing literature. The library is supplemented by an expansive set of tutorials, demos, and documentation to help users get started. We perform experiments on the PyRelationAL collection of benchmark datasets and showcase the considerable economies that AL can provide. PyRelationAL is maintained using modern software engineering practices - with an inclusive contributor code of conduct - to promote long term library quality and utilisation
    corecore